LAB DEMO 05

PS2 Debrief (1)

Basically, we assume that the “unknown data structure”
isa stack, a queue, and a priority queue, then
keep simulating the insertion to and the removal from
that “unknown data structure” until proven false for a
certain type of data structure, a.k.a. “innocent until
proven guilty”

Stack only for A
Stack and Queue for B

Stack, Queue, and Priority Queue for C
— Just whack with <stack>, <queue>, <priority_queue>, easy PS2

-
| 2 |
<

PS2 Debrief (2)

For Subtask D, you are asked to implement own DS :0
— You can literally follow D03 example about Stack for this part
— Then extend InsertAfterTail to deal with the Queue part...

But but... we know that there won’t be more than 100 000
items in that unknown data structure

So we do NOT have to force our self to use Linked List
solution to implement a Stack or a Queue

— We can use array/vector (of size 100 000) with Insertion/Removal at
the back to emulate a Stack

— We can use array/vector (of size 100 000) with two pointers front and
back to emulate a Queue (we will not cause index out of bound :0)

 We do NOT even need to deal with circular array for queue :0
— For PQ... see BinaryHeapDemo

PS3 Status (as of today)

“-“- s

lgnored

AC

The rest of you...
~8 more days to complete PS3

Hacking Solution for PS3 Subtask |

UpdateDilation() and GiveBirth() can make things difficult

But in Subtask |, 1 < n < 15

You can just use an array of size 15 and keep re-sorting the
positions

of up to 15 women for every ArriveAtHospital(), UpdateDilation(),
and GiveBirth() operations that can change the ordering

This way, if done correctly, can give you “free” 1 point

This is not a “proper PQ” solution though and only uses sorting
knowledge that we have learned in the first half of C52040C :O...

But this is a solution that you should write if you have nothing else

for the harder subtasks, e.g. during individual tests... &
— At least non zero

Easiest Solution for PS3 Subtask Il

It is a classic PQ example! Read the wording carefully!

Easiest solution: Just use C++ STL priority_queue!

* Implement a “woman object”
— Important note: Real life woman is NOT an object!

* PS: Some senior students name this variable to “mommy” &

* Or, we can just use pair or tuple from earlier

— pair<int, int> woman, first field is dilation, second field is arrival

index
* We can negate the second field :0

 DONE, ArriveAtHospital==push, GiveBirth==pop, Query==top

PS: Other solutions exist, like the one in Tut07 later!

Why PS3 Subtask Il is Harder?

Why it is not easy for C++ priority_queue to handle
UpdateDilation() operation efficiently, i.e. faster than
O(n)?

« This requires ability to modify a key inside the Priority Queue

(likely Binary Heap) where this key can be anywhere in the Binary
Heap (not necessarily in the root - the easiest place)

« This operation is sometimes called as heapUpdateKey(i, v)
» To do this efficiently, we need something that is hidden in VisuAlgo

Note, the GiveBirth() operation is also more complex now

* It may involve deletion of a key that is not necessarily the current
maximum of the Binary Heap :0

heapUpdateKey(i, v)

To update the value of a key i to a new value v

(where i is not necessarily the root---index 1), we
need:

1. Away to fix (Max) Heap property as changing the
previous value to a new value v may cause violation of
(Max) Heap property

Hint: Anything to consider?
2. A way to quickly identify this index i

Hint: Something that you learn yesterday? (Thu of Week
07),

see next slide

C++ STL unordered_map SHORT demo

unordered_set is similar

« constructor
 insert, operator [], find, count

* range-based for loop to access the keys (in unordered
fashion)

* erase
* empty, size
« http://en.cppreference.com/w/cpp/container/unordered map

GiveBirth(i)

To delete key i (where i is not necessarily the root---index

1),
we just need:

heapUpdateKey (i, INF) // i will be at the root now
ExtractMax () // then &

Of course you still need a fast way to map a woman name

to her index i quickly, the same thing that we discussed
earlier

PS: Other ways exists

PS3...

All the best in clearing PS3, if you have not done

SO

* Subtask IV requires you to avoid using STL :O...

— AC-ing it shows Steven that you really understand Binary Heap
and Hash Table concepts (or some other concept :0)...

— 0 point, totally optional this time

Remember: If you keep delaying your first

attempt
for PS3, you may run out of time even though

you have ~8 days working time for PS3

VisuAlgo Training Mode

PS3 is clearly about Binary Heap + Hash Table (or?)

Make sure that you understand the explanation in:
https://visualgo.net/en/heap?slide=1 (until the last slide)

You can use VisuAlgo Online Quiz training mode to
check your basic understanding about Binary Heap

on “infinite” number of random questions:

https://visualgo.net/training?diff=Hard&n=5&tl=5&module=heap
(direct URL problematic now, will debug later; just use main page)

Mock PE 1

Solve https://open.kattis.com/problems/cd

Before this Lab session runs out (xx.45)!!

Start from this template code (share your repl
link) that already have

Gradual hints will be added in few minutes
interval

